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"Abstract — This paper describes a new approach to numerical solution of the high frequency approximation to the wave equation.
Traditional solutionsto the Eikonal equation in high frequency acoustics are obtained viaray tracing. In ray tracing, the numerical
grid on which solutions are computed becomes distorted over time asrays diver ge from theinitial wavefront, reducing the accur acy of
thesolution. Theleve set method isafixed grid method, whereby the user controlsthe underlying grid, and hencethe accuracy, of the
solution.

|. INTRODUCTION

Accurate and computationally efficient smulation of physical processes is key to reducing the need for expensive and
environmentally risky at-sea system level experiments and data collection. Level Set Methods (LSM) are generic, computational
techniques devel oped by Osher and Sethian [1] for tracking the evolution of moving curves and surfaces. Traditionaly,
propagation models use ray tracing to solve via method of characteristics. When rays (characteristics) diverge, eventualy they do
not cover enough of the physical space so that accurate, well-resolved solutions are not available on any uniform grid. For this
reason, there has been interest in devel oping methods for solving general propagation problemsin afixed frame of reference. The
advantage of this approach isthat standard partia differential equation (PDE) solvers, e.g., finite difference approximations, can
be employed to sol ve the problem on uniform grids which may then be refined to produce higher accuracy. LSM achieve this by

representing the propagating surface asthe zero level set of ahigher dimensional function. This function, say @(X,t) , is

designed so that ¢#(X,0) =0 for x on theinitial propagating surface in phase space. Thiszerolevel set isthen transported via

the underlying velocity field. In the case of acoustic propagation in isotropic media, the propagation direction isnormal to the
propagating surface (wavefront). LSM are attractive due to their robustness — they easily handl e the evol ving topology of the
surface being tracked, the normal vector and curvature can be extracted at any point of the front from the level set function
(provided the normal and curvature are well-defined at that point), and it is straightforward to extend the theory to higher
dimensions.

Software packages based on several computational approaches in addition to ray tracing aready exist which can accurately
solve the equations of acoustic propagation. For instance, to compute the full wave equation solution, one can use normal modes,
or Parabolic Equation (PE) methods. However, when computational expenseis at a premium, such as for real-time simulations,
these are not appropriate methods especially at high frequencies where required grid sizes become very large (in one dimension,
we need at least 2 points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency
propagation modeling. LSM may provide an alternative to ray tracing for solving the high frequency approximation to the wave
equation that allows the simulation user greater control over the accuracy of the solutions.

Thiswork builds upon the foundation established by Osher, Cheng, Kang, Shim, and Tsai in [2] in which abasic level set
method for geometric opticsisintroduced. Eulerian geometric optics has been atopic of intense research in the scientific
computing community for quite sometime. Benamou [3] provides an overview of approaches to this problem. The most similar
to the level set method isthe segment projection method [4] in which wavefronts are tracked in phase space as projections onto
each two dimensional subspace of the three dimensional phase space. Thismethod is effective, but requires complicated
bookkeeping in order to reconstruct wavefronts. The approach of Osher, et al. propagates the wavefront in the full phase space.
Reference [5] builds upon [2] by extending the method to propagation in anisotropic materials. In [6], an efficient method for
incorporating reflecting boundaries is introduced.
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In this paper, we apply these foundations to the specific problem of high frequency acoustics. In section I1, we provide an
overview of the method and a description of the implementation. In section 11, we present some preliminary results
demonstrating the algorithm’s performance in a few sample cases including varying sound speed profiles and reflecting
boundaries.

Il.  DESCRIPTION OF APPROACH

A. Leved Set Methods

LSM were originally devel oped for solving Hamilton-Jacobi type equations. A Hamilton-Jacobi equation isa first-order
nonlinear PDE having the form U, (X,t) + H (X, Vu) = 0, where H isanonlinear function. In the case of the Eikonal equation

derived from the high frequency approximation to the wave equation, H (X, Vu) = J_rc(x)|Vu| , With the nonnegative function
c(x) specifying the propagation speed of the medium; the sign ambiguity refers to the direction of propagation (inward or outward
from theinitial condition). For smplicity, we only consider the case H (X, Vu) = +C(X)|Vu| :

Two difficulties must be addressed when solving the Eikonal equation in afixed frame of reference: first, the solutions may be
multi-valued (e.g., caustics), and second, solving over the entire spatia grid implies substantially increased requirements for
storage and processing. Thefirst issue isresolved by considering the wavefront in ahigher dimensional reduced phase space. In
two spatial dimensions, for instance, the phase space is four-dimensional, but this can be reduced to three dimensons since only
the direction of propagation isimportant. This meansthat the wavefront isrepresented in space, time, and alocal phase direction.
The wavefront is embedded in two level set functions, ¢ and y, which evolve in phase space according to afirst order system of
transport equations

g +V-Vg=0 @
w, +V -Vy =0
where the velocity field for the motion is given by
Vv :[c-cose,c-sine,%sine—%cose]T , )
ox 0z

as derived in [4], and ¢ = ¢(x,2) isthe medium sound speed. The phase space variable @isthe angle of thelocal ray direction (for
an isotropic medium). The wavefront is propagated in this higher dimensional space as a system of evolving surfaces, where
solutions are single-valued (Fig. 1).
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Figure1: Implicit representation of higher-dimensional wavefront —the wavefront isfound at the
intersection of the evolving zero-level-set surfaces; the horizontal axes represent physical space while
the vertical corresponds to an extended phase space dimension.

Theresulting physical wavefront isrecovered by finding the intersection of the zero level set surfaces of ¢ and y and, and then
projecting the resulting curve onto the horizontal (physical) planeasin Fig. 2. Since higher dimensional spaces arerequired,
memory issues must be carefully addressed. However, by selectively updating the system only locally near the wavefront and by
making use of efficient numerical methods, the burden on both storage and processor time can be greatly reduced. Thisisthe
basis for the local level set method [7].

Wavefront i

0 (rad) -

I nter section of
Level Sets

Figure2: Construction of the wavefront —the physical wavefront is found by projecting the curve of
intersection of thetwo zero level set surfaces (as can be seenin Fig. 1) from the higher dimensional
representation onto the two-dimensional spatial plane. As can be seen here, the wavefront is circular

since this simple case uses an isospeed medium.
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B. Implementation

The advantage of fixed-grid methods isthat they allow for ready application of standard partial differential equation solvers
which have well-established convergence properties, e.g., finite differences or finite elements. Thelevel set equations themselves
comprise a decoupled system of simplefirst order hyperbolic problems. For such problems, we focus on upwind schemes, which
take advantage of knowledge of the direction of propagation given by the known velocity field V. Here, we employ a semi-
Lagrangian method to solve the transport equation. Cheng uses a similar method in [9] to implement his generic three-
dimensional level set code.

There are two steps involved in our implementation. In thefirst step, a standard ordinary differential equation (ODE) solver,
such as a Runge-Kutta method, is used to step backward along the characteristics, which flow according to the known vel ocity
field V given in (2), onetime step at each grid point in phase space. This gives an approximate solution to where the value on the
grid at the current time came from. Since these points are not necessarily in the grid itself, an interpolation method is used to find
the value of the function at that point, which provides the solution at the current time on the grid. For example in our case, usng

backward Euler for the time stepping, assuming a constant sound speed ¢ and time step At , we solve for
i = o(X%, z,,6 ,t") onthegrid ({Xi }Nl : {Zj }?‘:l,{ﬁk }E‘jl) where x and z are the physical space variables, with #asthe

phase space variable, asfollows:

X =X —CAtcos(6,)
Stepl: Compute { Z' =z, —cAtsin(6,)

6 =6, '
Step2: Set ¢ =¢" (X ,Z,6")

In step 2, the quantity ¢”’1(X* Z ,9*) is estimated vialinear interpolation on the data {@Fk’l}. These steps are applied to

both level set functions ¢ and i . Further interpolation isthen used to find the intersection of the zero level sets and recover the

wavefront. Higher order methods can be applied here, however the stability result may not hold. Note aso that if the speed
function c(x,2) isnonlinear, an iterative method such as Newton-Raphson is required to solve step 1.

This approach has two important benefits. Oneisthat it effectively decouples the grid points from one another in thetime
stepping portion, making this part of the code readily parallelizable, aswell asallowing great flexibility in the choice of points at
which to solve. This becomes critical for athree dimensonal application where reduced phase space has five dimensions and
computation must be focused near the wavefront. The other significant advantage is that this method is unconditionally stable —
although this result depends on the interpolation scheme used in step 2. That is, it does not suffer from atime-step restriction
(i.e., the Courant-Friedrichs-Levy stability condition) as do standard Eulerian finite difference methods, and thuslarger time steps
can be taken without sacrificing stability; this could be critical for areal-time implementation as accuracy will have to be
sacrificed for speed.

For boundary conditions, if using finite difference methods, one-sided formulas can be derived at the boundariesto the desired
order of accuracy. For the semi-Lagrangian method however, an inflow condition must be defined for the case when information
is transported into the domain from outside. 1f the boundary is purely reflecting, all information is within the domain. We
currently use thistype of condition for the bottom and surface boundaries; snceit isahigh frequency algorithm, transmission into

the bottom is not of significant concern. Thereflection condition isimplemented by setting " (X Z,,6,¢) = 6" (X, Z,,6,,c) on

the boundary points, Z,, where &, istheincident angle computed via Snell’s law from the reflected angles, 6, , inthe grid. It

isnot physical to assumereflection on the left and right domain boundaries, so in order to compute a solution on the boundary at
incoming angles, we find the time and location at which the boundary was crossed, and assume the solution is constant beyond
that point. Thisisanumerical schemethat worksaslong asall of theimportant physical action is sufficiently far away from that
boundary. Onenice feature of the level set method isthat what happensto theleve set functions away from the zero level sets
themselvesislargely irrelevant. Aslong as the source isinside the domain, approximations made at inflow do not have a
significant effect.
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I1l. RESULTS

We next present some preliminary results obtained with our algorithm. All of the plots were generated from our Matlab®
prototype code, using the semi-Lagrangian method to solve the relevant differential equations. Thefirst case (Fig. 3) uses an
isospeed profile using a sound speed ¢ = 1500 m/s and no boundaries. The circular wavefront gradually expands and exits the
domain. Fig. 3adisplays snapshots of the wavefronts at a few time steps and Fig. 3b shows therays extracted from the level sat
results. As expected in an isospeed medium, therays appear as straight lines.
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Figure 3: a) Wavefrontsin an isospeed medium with no boundaries; b) Rays extr acted
froma)

In Fig. 4a, the wavefronts are depicted for asimilar case, but thistime with alinear sound speed profile that gradually
increases from 1500 m/sto 2000 m/s (see Fig. 5). The propagation effects are subtle, but we observe the wavefront
expanding faster at greater depths thus distorting the wavefront from its original circular form. Theray trace for this case,
Fig. 4b, shows the rays curving dightly downwards in the direction of increasing propagation speed. A few “outlier” points
appear on the ray trace; we suspect that these transient errors are due to inaccuracies in the contour finding routine we are
using. They have not affected the overall solution, so are not indicative of any underlying instability.

The next examples include reflecting boundaries at the surface and bottom of the domain for a simplistic shallow water
model. Again we present cases with an isospeed medium (1500 m/s) and with the linear profile depicted in Fig. 5. In Fig.
6a, theinitial wavefront expands and eventually reflects off of the surface and bottom boundaries, presenting anice
symmetry. In Fig. 6b, the ray trace shows the correct pattern with straight lines reflected back symmetrically. Thelinear
profile example is more interesting; again the subtle bending of theraysis observable asisa small distortion in the expanding
wavefront pattern in Fig. 7.
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Figure6: a) Wavefrontsin isospeed medium and reflecting boundaries at the surface
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Figure7: a) Wavefrontsin medium with linear sound speed profile and reflecting
boundariesat the surface and bottom; b) Corresponding ray tr ace

IV. CONCLUSION AND FUTURE PLANS

In this work, we have outlined anovel approach to solving the high frequency wave equation of acoustic propagation. The
demonstrations of simple propagation models in section 111 above suggest that this method holds promise. There still isaneed to
address the errors that appear in the non-constant sound speed case; future plansinclude incorporating more specialized
interpolation algorithms for identifying the level set surfaces and their intersections. Thiswill also be key to obtaining good
results with more general geometry. Once this portion of work is complete, athorough validation against known results will

ensue.

The goal of this project isto build a prototype software package that will combine the basic framework of LSM with realistic
surface and bottom models, appropriate |oss models, and will be optimized for computational speed. It is also desirable to extend
thisto alow for stochastic boundary conditions (e.g., the ocean surface), and propagation through random media. Existing
simulations involving underwater acoustics assume a deterministic acoustic response, and if any variability is added, it is often
post-processed, hence not capturing its true nature. Since the variability originatesin the environment, thisis where it should be

accounted for.
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